掌握辅助角公式cos形式,轻松搞定三角函数难题

1. 和差化积公式(Sum-Difference Formula):

– sin(A + B) = sinAcosB + cosAsinB

– sin(A – B) = sinAcosB – cosAsinB

– cos(A + B) = cosAsinB + sinAsinB

– cos(A – B) = cosAsinB – sinAsinB

2. 积化和差公式(Product-to-Sum and Difference formulas):

– sin(A/2)cos(B/2) = (sinAcosB + sinBcosA)/2

– cos(A/2)sin(B/2) = (cosAsinB – cosBsinA)/2

3. 二倍角公式(Double angle formulas):

– sin2A = 2sinAcosA

– cos2A = 2cos^2A – 1

– tan2A = 2tanA/(1 – tan^2A)

4. 半角公式(Half-angle formulas):

– sin(A/2) = √[1 – (2cos^2(A/2))]

– cos(A/2) = √[1 + (2sin^2(A/2))]

– tan(A/2) = √[1 + (2sin^2(A/2))] / √[1 – (2cos^2(A/2))]

5. 正弦、余弦和正切的半角公式:

– sin(A/2) = √[1 – (2cos^2(A/2))]

– cos(A/2) = √[1 + (2sin^2(A/2))]

– tan(A/2) = √[1 + (2sin^2(A/2))] / √[1 – (2cos^2(A/2))]

6. 和差化积公式的应用:

– sin(A + B) = sinAcosB + cosAsinB

– sin(A – B) = sinAcosB – cosAsinB

– cos(A + B) = cosAsinB + sinAsinB

– cos(A – B) = cosAsinB – sinAsinB

7. 积化和差公式的应用:

– sin(A/2)cos(B/2) = (sinAcosB + sinBcosA)/2

– cos(A/2)sin(B/2) = (cosAsinB – cosBsinA)/2

8. 二倍角公式的应用:

– sin2A = 2sinAcosA

– cos2A = 2cos^2A – 1

– tan2A = 2tanA/(1 – tan^2A)

9. 半角公式的应用:

– sin(A/2) = √[1 – (2cos^2(A/2))]

– cos(A/2) = √[1 + (2sin^2(A/2))]

– tan(A/2) = √[1 + (2sin^2(A/2))] / √[1 – (2cos^2(A/2))]

10. 正弦、余弦和正切的半角公式的应用:

– sin(A/2) = √[1 – (2cos^2(A/2))]

– cos(A/2) = √[1 + (2sin^2(A/2))]

– tan(A/2) = √[1 + (2sin^2(A/2))] / √[1 – (2cos^2(A/2))]

通过这些公式,你可以将复杂的三角函数表达式简化为更易于计算的形式。例如,如果你需要计算sin(π/4 + A),你可以使用和差化积公式将其转换为sin(π/4)cos(A) + sin(π/4)sin(A)。这样,你就可以直接计算sin(π/4 + A)的值了。